

Picture of Choctaw Nation of Oklahoma Capital grounds Red Warrior "Tvshka Homma" Statue

Priority Climate Action Plan Choctaw Nation of Oklahoma

Prepared for United States Environmental Protection Agency (EPA) Climate Pollution Reduction Grant

This project has been funded wholly or in part by the United States Environmental Protection Agency (EPA) under assistance agreement 02F41401 to Choctaw Nation of Oklahoma.

The contents of this document do not necessarily reflect the views and policies of the EPA, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document.

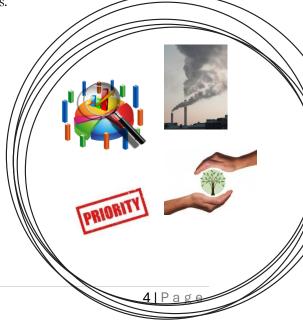
Table of Contents

Executive Summary	4
Introduction	
CPRG Overview	
PCAP Overview	7
Approach to developing the PCAP	7
Scope of PCAP	
Tribal/Territorial Organization and Development Team	9
PCAP Elements	<u> </u>
Greenhouse Gas Inventory	9
Emission Source Categories Evaluated	10
Calculation Methodology	10
Stationary Combustion	
Mobile Units	
Electricity	
Urban Forestry	
Wastewater Treatment Systems	
Agriculture	13
Solid Waste	13
GHG Inventory Results	15
GHG Priority Reduction Measures	
RM #1 – Installation of Automatic Lighting Sensors	16
RM #1 – Quantification of GHG Reductions	
RM #2 – Reduction of Single Use Plastics	17
RM #2 – Quantification of GHG Reductions	18
RM #3 – Switch Traditional Lighting to Light-Emitting Diode	18
RM #3 – Quantification of GHG Reductions	18
Benefits Analysis	19
Review of Authority to Implement	20
Identification of other Funding Mechanisms	20
Workforce Planning Analysis	20
Next Steps	21
Appendix A – GHG Emissions Summary	22
Appendix B – Priority GHG Reduction Measures	31

Executive Summary

The U. S. Environmental Protection Agency (EPA) provided grant funding to the Choctaw Nation of Oklahoma (CNO) to develop a Priority Climate Action Plan (PCAP) and a Comprehensive Climate Action Plan (CCAP). Authorized under section 60114 of the Inflation Reduction Act (IRA), the Climate Pollution Reduction Grants (CPRG) program provides grants to tribes and territories to develop and implement ambitious plans for reducing greenhouse gas (GHG) emissions and other harmful air pollution. The PCAP is to include proposed priority reduction measures for submittal. The PCAP provides the basis for eligible entities to pursue Climate Pollution Reduction Grant implementation funding from the EPA.

The purpose of the Priority Climate Action Plan (PCAP) is to provide the Choctaw Nation of Oklahoma with high level recommendations for projects and programs that the Nation can implement to reduce GHG emissions throughout the reservation boundaries. The focus will be in two sectors, energy generation reduction and solid waste management. This plan will indicate reduction measures needed in the attempt to reduce GHGs throughout the reservation boundaries.


The PCAP was led by CNO Environmental Protection Service (EPS) team members as well as minor consultation with outside consultant for emissions calculations. CNO EPS looked at all the counties in the reservation to identify priorities and needs in all the communities as well as gaining data and knowledge aiding in the development of this PCAP.

There are two phases associated with the CPRG program. Phase 1 of the CPRG program is focused on developing a plan to design climate action plans that incorporate a variety of measures to reduce GHG emissions from six key sectors (electricity generation, industry, transportation, buildings, agriculture/natural and working lands, and waste management). Phase 2 of the CPRG program is a separate grant and is aimed at the implementation phase of identified reduction measures.

Choctaw Nation of Oklahoma's road to GHG emissions reductions is outlined in this Priority Climate Action Plan. CNOs PCAP will result in reduced electricity consumption, significant reductions in waste, as well as improved overall environmental and health benefits.

CNO's PCAP process included:

- ✓ Data Coordination
- ✓ GHG Inventory Development
- ✓ Select Priority Measures
- ✓ Environmental and Health Benefits Analysis

1. Introduction

1.1 CPRG Overview

Choctaw Nation of Oklahoma, with support from the EPA via funding under the CPRG program, endeavors to better specify climate impacts within the CNO Reservation, as well as all interactions with GHG emissions. This understanding enables strategic planning for the sustainable development and improvement of the Choctaw Nation reservation, both human and environmental.

The Choctaw Nation of Oklahoma is the third largest Indian Nation in the United States. The Choctaw Nation reservation, located in the southeastern portion of Oklahoma shares borders with the States of Texas and Arkansas, covers approximately 11,000 square miles and encompasses eight entire counties (Atoka, Choctaw, Haskell, Latimer, Le Flore, McCurtain, Pittsburg, Pushmataha) and portions of five counties (Bryan, Coal, Hughes, Johnston, Pontotoc).

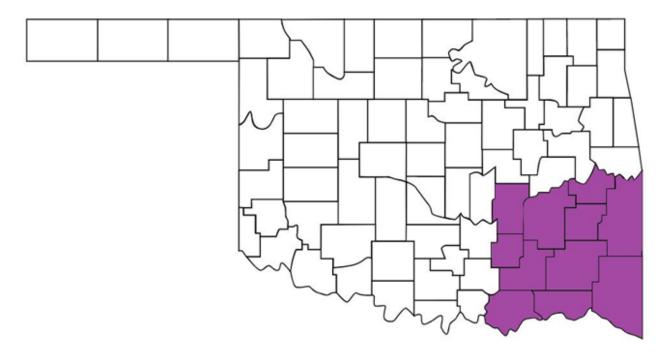


Figure 1. State of Oklahoma geographic profile of Choctaw Nation

Choctaw Nation of Oklahoma District Map

Figure 2. - Choctaw Nation of Oklahoma territory boundaries within Oklahoma

The Choctaw Nation of Oklahoma is a sovereign nation with the inherent right to self-governance. CNO has its own government and constitution which provides for an executive, legislative and judicial branch of government and consists of elected officials. Tribal affairs and decisions are the responsibility of an elected Chief as well as twelve Tribal Council positions. Considerable services are available to Tribal members including, but not limited to, cultural programs, healthcare, housing assistance, veterans' benefits, education, and economic development. Choctaw Nation's commitment to sustainability, cultural preservation, and the overall well-being of the people and lands is reflected in the current progress and future goals of the Nation.

The Choctaw Nation's vision of "Living out the Chahta spirit of Faith, Family and Culture" is evident as CNO fosters a sustainable eco-friendly future through its environmental programs. The aim is to improve the overall quality of the tribal reservation lands. Through the Inflation Reduction Act of 2022, the Choctaw Nation can achieve objectives similar to the EPA.

CNO will seek to achieve objectives such as:

- **4** Tackling climate pollution by reducing energy consumption.
- Attempting to deliver cleaner air by reducing harmful air pollutants in the places that Tribal members and non-tribal members alike live, play, work, attend school, etc.
- 4 Addressing environmental injustices within the reservation boundaries improving human health and the environment.

The overall intent for the CPRG program is to communicate knowledge and accountability regarding emissions, climate pollution, and environmental injustice throughout the reservation. The CPRG program also aims to gain support to proactively prepare and meet the need for changes to ensure the wellbeing and continuity of our communities and to take care of our lands, waters, natural resources, as well as our non-human kin and nature.

1.2 PCAP Overview

Climate action planning is an important step towards slowing the negative effect of climate change. Climate change has caused an increasing number of days with extreme heat, significant drought conditions, air pollution, and other impacts within the boundaries of the Choctaw Nation reservation. Tribal nations are some of the more vulnerable communities to the impacts of climate change. Choctaw Nation is committed to planning and implementing climate change pollution reduction actions along with Tribal sustainability goals.

Choctaw Nation developed a PCAP that addresses key deliverables required for Phase I CPRG grant requirements. CNO has completed the following elements of the PCAP:

- ➢ GHG Inventory
 - A baseline 2023 GHG inventory
- Quantified GHG reduction measures
 - o GHG reduction measures for various sectors
- Benefits Analysis
 - An analysis of GHG emissions for the co-benefit of a reduction in air pollution throughout the Choctaw Nation Reservation.
- ➢ Review of Authority to implement

1.3 Approach to Developing the PCAP

The Choctaw Nation of Oklahoma developed this PCAP out of a need to address issues with air quality and a reduction in emissions within the reservation boundaries. Weekly meetings were held to discuss the needs of the Tribe along with investigation processes to be completed. While the tribe has certain measures already in place for addressing some emissions issues, this PCAP will help the Environmental Protection Service to clarify the needs of the Tribe and to further mitigate future issues caused by emission sources throughout the reservation boundaries. Various energy resources were

utilized to gather data on energy consumption. CNO was able to utilize various other public inventory tools in this information gathering.

Energy generation statistics were gathered and utilized in the initial GHG inventory emissions data capture. The report shows the annual energy usage by sector across the reservation boundaries. These data values were used to calculate the GHG emissions.

Implementation of any emissions reduction measures within the Choctaw Nation of Oklahoma will rely on the inherent knowledge of its Tribal leaders, any partnerships garnered from other Tribes in the region, as well as utilizing partnerships with city, state and federal agencies. The administrative processes below will lay the foundation for the future of the CNO and its goals of emissions reduction.

The Choctaw Nation will:

- Develop partnerships to gain the trust and collaboration of local entities. Often local utility companies, building owners, landowners and other key partners are left out of the discussions. We aim to garner this trust through these trusted partnerships.
- Obtain Tribal Council approvals and participation in this project by passing resolutions to provide support as well as grant writing. The expertise in management will also lend support to this project.
- Gain support and commitment from local communities to highlight the importance of the project as well as any community needs. A commitment from local communities allows CNO to lend a hand in times of need.

1.4 Scope of the PCAP

Climate change refers to significant changes in the global temperatures and weather patterns over time. It is understood that climate change is a natural consequence of the current trends driven by detrimental human activities. These activities include releases of significant quantities of greenhouse gases (GHGs) into the atmosphere. These gases trap heat from the sun which causes the average temperature on earth to rise. This PCAP includes inventories that cover emissions from all counties within the Choctaw Nation reservation boundaries.

CNO realized that energy generation, energy conservation. and waste management were the measures currently found as relevant for further investigation throughout the reservation. Tribal communities often face a disproportionate challenge regarding environmental issues such as pollution and climate change. These challenges often further existing economic and social challenges. Emissions reductions are often challenging when faced with these issues.

The Choctaw Nation of Oklahoma projects considered in this PCAP are projected to be in motion by the end of 2025. While there is no hard timeline when we will start seeing results, we estimate that measures in place at the end of 2025 should be fully implemented within five (5) years of project inception.

2. Tribal/Territorial Organization and Development Team

The Choctaw Nation of Oklahoma Environmental Protection Service (EPS) department works to develop and implement programs and processes in the environmental sustainability of the Tribe. This PCAP was developed by EPS Staff as well as minor outside consultation. Decision making authority has been through EPS Staff as well.

Team members were as follows:

Tye Baker, Senior Director Environmental Protection Service Tracy Horst, Director Environmental Compliance Aimee McClure, Environmental Specialist II, Environmental Compliance Nicole Morrison, Environmental Coordinator I, Environmental Compliance

Collaborations within CNO were with the Utility Authority (CNUA) department. CNUA was able to provide critical information from utility companies. This energy consumption information aided in the calculations used in the development of reduction measures. Collaboration with an outside consultant allowed for the calculations to be made real time. These calculations aided in the final consumption data sets utilized in the reduction measures development.

3.1 PCAP Elements

3.1.1 Greenhouse Gas Inventory

To fulfill the requirements of the first subtask established in the approved QAPP, CNO developed a GHG inventory of major GHG emission source categories within the thirteen (13) counties under CNO's jurisdiction, including:

- ✓ All of Atoka County
- ✓ All of Choctaw County
- ✓ All of Haskell County
- ✓ All of Latimer County
- ✓ All of Le Flore County
- ✓ All of McCurtain County
- ✓ All of Pittsburg County

- \checkmark All of Pushmataha County
- ✓ Parts of Bryan County
- ✓ Parts of Coal County
- ✓ Parts of Hughes County
- ✓ Parts of Johnson County
- ✓ Parts of Pontotoc County

CNO has chosen to develop the GHG inventory for the year 2023 as the base year. The 2023 base year is representative and reflective of CNO's general emissions pattern. The inventory was created by using publicly available data for applicable emission categories. The data was then scaled to CNO's

activity in 2023 using activity data such as population or area (See Appendix A). The GHG inventory quantified the annual estimates for primary GHGs such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) and are reported in carbon dioxide equivalent (CO₂e) by applying their respective CO₂e global warming potential (GWP) factors.¹

The inventory organized emissions based on the source categories established in the EPA's Tribal – GHG Inventory Tool (TGIT), which are further outlined in the following section. The estimates provided in the inventory are used to establish a baseline for CNO's contribution to air quality and will be used as a tool for establishing air pollution reduction measures. This data may not always correspond to the 2023 base year and often does not align with the CNO boundary. To address this, the data was adjusted using activity metrics, such as population data or area within the CNO boundary for the 2023 base year.²

3.1.2 Emission Source Categories Evaluated

The GHG inventory was organized based on the seven (7) emission categories established within the TGIT, which the EPA has deemed to have significant impacts on air emissions. These categories include:

- Stationary combustion;
- ➢ Mobile units;
- \succ Electricity;
- Electricity;

- Wastewater treatment systems;
- Agriculture; and
- Solid waste.

➢ Urban forestry;

When available, each emission source category was further organized into either:

- Sectors (residential, commercial/institutional, industrial, and energy generation); or
- ➤ Counties.

These sector or county groupings provide CNO with greater insight into the breakdown of emissions for each category.

3.1.3 Calculation Methodology

3.1.3.1 Stationary Combustion

The stationary combustion emission category was organized into sectors (residential, commercial/institutional, industrial, and energy generation) based on the publicly available data.

¹ GWPs per *IPPC AR6 7SM Report, Table 7.SM.6.* Accessible here:

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf

² Population data and areas for each county within CNO boundary are obtained from the United States Census Bureau. For counties that extend beyond the CNO boundary, areas within the CNO boundary are estimated using measurements from Google Earth. Available at https://www.census.gov/quickfacts/.

Stationary combustion fuel consumption data (natural gas and propane) for the residential sector was obtained from the U.S. Energy Information Administration Residential Energy Consumption Survey (EIA RECS) for the State of Oklahoma for the year 2020.³ The natural gas and propane consumption data were scaled to the CNO boundary for the 2023 base year using the population data. GHG emissions were then calculated using the consumption data and emission factors obtained from Tables C-1 and C-2 of 40 CFR Part 98 Subpart C.

There is no publicly available data for the commercial/institutional sector. As a result, emissions calculations for this sector were not performed.

Emission data for the industrial and energy generation sectors were obtained from the U.S. EPA Facility Level Information on Greenhouse gases Tool (FLIGHT) for the year 2022.⁴ FLIGHT provided the facility's CO₂e emissions and locations for facilities required to report GHG. The data was additionally organized at the county level, allowing CNO to filter for emissions from facilities within the CNO boundaries. Data was then scaled using population data to the 2023 base year.

3.1.3.2 Mobile Units

The mobile unit emission category was organized into counties based on the publicly available data. Emissions information were sourced from the U.S. EPA's National Emissions Inventory (NEI) tool, which compiles nationwide air emissions every three years by collaborating with state, local, and tribal agencies for criteria pollutants, GHG, and hazardous air pollutants (HAP).⁵ The most recent emissions, for year 2020, were pulled for each relevant county within the CNO boundary. As the NEI does not provide sector-specific data, emissions calculations were performed only at the county level. The data was then scaled into CNO boundary for the 2023 base year using the population activity.

In addition to county-level emissions, emissions were also summarized based on vehicle and fuel types as follows:

Highway vehicles, organized by fuel type;

- Natural gas (CNG);
- Diesel;
- Electricity;
- Ethanol (E-85); and
- Gasoline.

⁵ U.S. EPA 2020 National Emissions Inventory Data Retrieval Tool. Available at

https://awsedap.epa.gov/public/single/?appid=20230c40-026d-494e-903f-3f112761a208&sheet=5d3fdda7-14bc-4284-a9bb-cfd856b9348d&opt=ctxmenu,currsel

³ U.S. EIA RECS, "CE2.1.ST Annual household site fuel consumption in United States homes by state - totals and averages, 2020." Available at https://www.eia.gov/consumption/residential/data/2020/state/pdf/ce2.1.st.pdf

⁴ U.S. EPA FLIGHT. Available at: https://ghgdata.epa.gov/ghgp/main.do. FLIGHT data is per facility and is sorted by County. County emissions is obtained from adding all the facilities within the CNO boundary.

- ➢ Off-highway vehicles, organized by fuel type;
 - Natural gas (CNG);
 - Diesel;
 - Gasoline; and
 - Liquified petroleum gas (LPG).
- Pleasure crafts;
- Railroad equipment; and
- Commercial marine vessels.

3.1.3.3 Electricity

The electricity emission category was organized into sectors (residential, commercial/institutional, industrial, and energy generation) based on the publicly available data.

County-level residential, commercial/institutional, and industrial electricity consumption for the 2023 base year was obtained from the National Renewable Energy Laboratory State and Local Planning for Energy (NREL SLOPE) projection.⁶ Electricity consumption was scaled to CNO boundaries using available population data. GHG emissions for CO₂, CH₄, and N₂O were calculated using the scaled electricity consumption and emission factors provided from the eGrid Power Profiler for subregion SPSO (SPP South/Texas Panhandle - Oklahoma region).⁷

There is no publicly available data for the energy generation sector. As a result, emissions calculations for this sector were not performed.

3.1.3.4 Urban Forestry

The urban forestry emission category was organized into counties based on the publicly available data.

County-level data for total urban area and % urban area with tree cover for the year 2020 were obtained from the U.S. Forest Service Research Data Archive.⁸ The total urban area was scaled into CNO boundaries for 2023 data using the county area activity data. It is assumed that the % urban area with tree cover was the same between 2020 and 2023. Emissions sequestration from urban forestry were then calculated using the method outlined in the TGIT and using the carbon sequestration factor

⁶ National Renewable Energy Laboratory (NREL) State and Local Planning for Energy (SLOPE) Tool. Available at: https://maps.nrel.gov/slope/data-viewer?filters=%5B%5D&layer=energy-consumption.net-electricity-and-naturalgas-consumption&year=2020&res=state.

⁷ eGrid Power Profiler for subregion SPSO. Available here: https://www.epa.gov/egrid/power-profiler#/SPSO.

⁸ 2020 Total Urban Area and % Urban Area with Tree Cover obtained from the U.S. Forest Service Research Data Archive, Urban Land Cover & Urban Tree Cover datasets. Data accessible here: https://www.fs.usda.gov/rds/archive/catalog/RDS-2021-0075

for the State of Oklahoma. All carbon sequestration from the urban forestry category was assumed to be under the commercial/institutional sector.

3.1.3.5 Wastewater Treatment Systems

The wastewater treatment systems emission category was not able to be organized into counties based on publicly available data.

CNO utilized the emissions from the domestic and industrial treatment/effluent for the 2022 nationwide GHG emissions from the U.S. EPA's Inventory of Greenhouse Gas Emissions and Sinks report.⁹ Emissions data was provided for the entire U.S. population and was then scaled using population activity data to only account for CNO populations in the 2023 base year. All emissions from this category were assumed to be part of the commercial/institutional sector.

3.1.3.6 Agriculture

The agriculture emission category was not able to be organized into counties based on publicly available data.

CNO obtained the total fertilizer purchased for the State of Oklahoma from the 2017 Commercial Fertilizer Purchased (1000 kg of Nitrogen) statewide value from the U.S. EPA.¹⁰ The data was then scaled by area activity data to the total fertilizer purchased within the CNO boundary. It is assumed that only area activity data is relevant in scaling the statewide fertilizer throughput and that population changes did not impact the fertilizer throughput. The N₂O emissions were determined using the emission factors and calculation approach as provided in the TGIT. Conservatively, all fertilizer applied was assumed to be synthetic fertilizer, which has the highest emission factors. Additionally, all emissions from the agriculture category were assumed to be under the commercial/institutional sector.

3.1.3.7 Solid Waste

A list of all landfills and their respective annual waste generated within CNO boundaries was developed based on the Annual Tonnage Report from the Oklahoma Department of Environmental Quality (ODEQ).¹¹ The annual tons of waste reported from 2019 through 2024 were then input into

⁹ Table 7-7 of *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022*. See report here: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022.

¹⁰ Fertilizer Purchased value obtained from the Nutrient Pollution - Commercial Fertilizer Purchased, Fertilizer nitrogen data table. Data table provides amounts of fertilizer nitrogen (N) purchased by states in individual years; 2017 data utilized for calculation of N₂O emissions. Data table accessible here: https://www.epa.gov/nutrientpollution/commercial-fertilizer-purchased#table1

¹¹ Annual Tonnage Reported from the Oklahoma Department of Environmental Quality, as reported here: https://www.deq.ok.gov/wp-content/uploads/2021/02/Annual_Tonnage_Reported.pdf

the California Air Resources Board's (CARB's) Landfill Gas Tool.¹² Since the emissions calculation is based on a first-order decay model, historical data was used to provide an accurate estimate of emissions. The CARB Landfill Gas Tool helps landfill owners and operators comply with the applicable California Landfill Methane Regulations but is also a resource for facilities outside of California to determine emissions based on annual production values.

Based on the tool's methodology notes, emissions calculated using this tool were estimated using the equations from Intergovernmental Panel on Climate Change's (IPCC) Mathematically Exact First-Order Decay Model (2006 IPCC Guidelines), based on the percent waste that is degradable anaerobic degradable organic compound % (ANDOC%), which is calculated using the following equation:

$ANDOC\% = \sum WIPFRAC_i \ x \ TDOC_i \ x \ DANF_i \]$

Where WIPFRAC_i is the fraction of the i^{th} component in the Waste-in-Place, TDOC_i is the total degradable organic carbon fraction of the i^{th} waste component, and DANFi is the decomposable anaerobic fraction of the i^{th} waste component.

Using this methodology, the tool provided emissions results for both CO₂ and CH₄ emissions for the 2023 base year. All emissions from the solid waste category were assumed to be under the commercial/institutional sector.

There were two additional landfill facilities within the CNO boundaries that did not report their annual waste to ODEQ: International Paper – Valliant Mill Non-Hazardous Industrial Waste (NHIW) Landfill and McAlester Army Ammunition Plant NHIW Landfill. However, emissions data for these two facilities was obtained from the FLIGHT tool for the year 2022.¹³ The data was then scaled to CNO boundaries and population metrics for the specific counties where these facilities are located (McCurtain and Pittsburg counties) to reflect the emissions for the 2023 Base Year and to match the CNO boundary.

¹² California Air Resources Board's (CARB) Landfill Gas Tool, using annual tons of waste reported from 2019-2024. See sample workbook here: https://ww2.arb.ca.gov/resources/documents/carbs-landfill-gas-tool.

¹³ U.S. EPA FLIGHT. Available at: https://ghgdata.epa.gov/ghgp/main.do. FLIGHT data is per facility and is sorted by County. County emissions are obtained from adding all the facilities within the CNO boundary.

3.1.4 GHG Inventory Results

Table 3.1 below provides a high-level summary of the GHG emissions, organized by the emission source.

Category	Sector	Sectoral CO2e Emissions (metric tons)	Total CO2e Emissions (metric tons)			
	Residential	184,460				
Stationary	Commercial/Institutional		4,887,801			
Combustion	Industrial	770,507	4,007,001			
	Energy Generation	3,932,835				
Mobile Units	Sector Data Not Available		2,051,042			
	Residential	579,769				
Electricity.	Commercial/Institutional	373,089	1 206 206			
Electricity	Industrial	343,438	1,296,296			
	Energy Generation					
	Residential					
Urban Forestry	Commercial/Institutional	-25,821	-25,821			
(Sequestration)	Industrial		-25,021			
	Energy Generation					
	Residential		_			
Wastewater	Commercial/Institutional	58,798	- 58,798			
Treatment	Industrial		56,798			
	Energy Generation		1			
	Residential					
Agriculture	Commercial/Institutional	229,269	229,269			
Agriculture	Industrial		229,209			
	Energy Generation					
	Residential					
Solid Waste	Commercial/Institutional	123,910	122 010			
JUIU WASLE	Industrial		123,910			
	Energy Generation					
Total Emissions			8,647,116			

Table 3.1.	CNO	2023	Base	Year	GHG	Emissions
------------	------------	------	------	------	-----	-----------

Currently, the largest contributors to GHG emissions are the stationary combustion (57%), mobile units (24%), and electricity use (15%) categories.

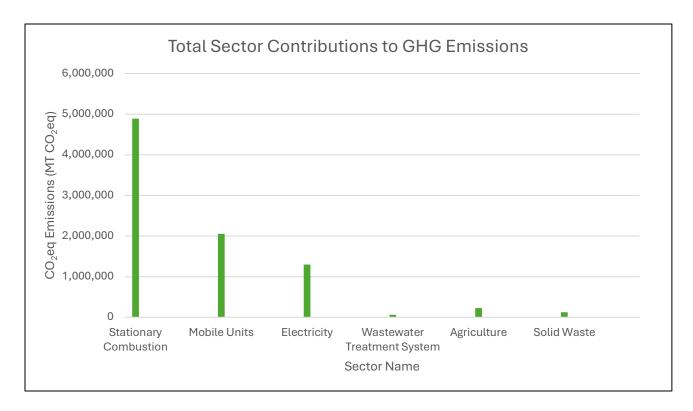


Figure 3.1. CNO – 2023 GHG Emissions by Source Category

3.2 GHG Priority Reduction Measures

CNO has selected three priority reduction measures (RM) discussed in more detail below.

3.2.1 RM #1 – Installation of Automatic Lighting Sensors in all CNO operated facilities.

Lighting use constitutes between 10% and 20% of the total electricity consumption in commercial buildings.¹⁴ Implementing automatic sensors to existing fixtures is a straightforward and effective retrofit option to reduce electricity consumption. Lighting control systems that dim or turn off the light in unoccupied areas can lead to significant energy savings. Studies have shown that adding lighting

¹⁴ U.S. Energy Information Administration. 2018 Commercial Buildings Energy Consumption Survey. Building Characteristics Flipbook, DC: U.S. Energy Information Administration (EIA).

controls can reduce energy use by 10% to 90% or more depending on the space in which the sensors are installed. 15

CNO proposes to install automatic sensors for lighting fixtures in all CNO owned and/or operated government buildings. CNO will conduct an evaluation of the different types of spaces within the government buildings to determine which type of sensors are appropriate for a given type of space.

3.2.1.1 RM #1 – Quantification of GHG Reductions

The total reduction in electricity consumption (in kWh/year) resulting from the installation of automatic lighting sensors in all CNO buildings was calculated using the annual electricity consumption for all CNO buildings in base year 2023, the average electricity consumed for lighting purposes, and the average savings in electricity consumption from the implementation of the occupancy sensors. The annual electricity consumption for CNO buildings were obtained from the utility provider, the average electricity consumption for lighting purposes is obtained from the U.S. EIA 2023 Commercial Buildings Energy Consumption Survey (CBECS), and the percent savings in electricity consumption for occupancy sensors is obtained from the U.S. Department of Energy's Better Buildings Division.

Once the reduced electricity consumption is calculated, the GHG emissions were calculated for CO₂, CH₄, and N₂O and the emission factors provided from the eGrid Power Profiler for subregion SPSO.¹⁶

Implementation began in 2024. Implementation includes the purchase and installation of sensors at CNO facilities. EPS will host biannual meetings to review RM status. RM #1 progress of electric usage will be tracked through Utility Authority billing, number of facilities with automatic sensors, and cost savings.

Priority RM #1 is expected to result in an annual reduction of 304 metric tons of CO2e.

3.2.2 RM #2 – Reduction of Single-Use plastics in CNO Government Operations

Single-use plastics (SUP) are goods that are made primarily from fossil fuel-based chemicals (petrochemicals) and are meant to be disposed of right after a single use. Single-use plastics are most commonly used for packaging and service-ware, such as bags, bottles, wrappers, and straws. Since most single-use plastics are not recycled, they eventually end up in landfills and thereby contribute to GHG emissions from solid waste.

¹⁵ U.S. Department of Energy Fact Sheet on Wireless Sensors for Lighting Energy Savings. <u>Wireless-Sensors-Guidance.pdf (energy.gov)</u>

¹⁶ eGrid Power Profiler for subregion SPSO. Available here: <u>https://www.epa.gov/egrid/power-profiler#/SPSO</u>.

Reduction or elimination of single-use plastics is a very effective way to reduce GHG emissions resulting from the entire life cycle of single-use plastics – i.e., raw materials extraction, production, transportation, and end-of-life management. This will eventually result in a reduction in GHG emissions associated with solid waste emission category.

CNO proposes to eliminate roughly 39 tons of single-use plastics from its operations.

3.2.2.1 RM #2 - Quantification of GHG Reductions

The estimated single-use plastics to be eliminated by RM#2 is calculated from the number of employees using single-use plastics provided by CNO and the average plastic use per capita in the U.S. The emissions reduction was then calculated by multiplying the estimated single-use plastics eliminated by the emission factors for source reduction of various plastic materials from the Documentation of GHG Emission Factors from the U.S. EPA's Waste Reduction Model (WARM).¹⁷

Implementation began in 2024 with the initial phase with sipable lids available in common areas. Future efforts will include reduction of single use containers, plasticware, straws and bags. EPS will host biannual meetings to review RM status. RM #2 progress will track cost savings from reduction in SUP purchases.

Priority RM# 2 is expected to result in an annual reduction of 58 metric tons of CO2e.

3.2.3 RM #3 – Switch Traditional Lighting to Light-Emitting Diode (LED) in CNO Operated Buildings

LED is a highly energy-efficient lighting technology and uses at least 75% less energy compared to conventional lighting.¹⁸ LED lighting offers several advantages over traditional lighting options, such as fluorescent or incandescent lighting, which can contribute to reducing GHG emissions. They require significantly less electricity to produce the same amount of light. They can last up to 25 times longer than incandescent bulbs and around 3-5 times longer than fluorescent lights. LED lighting converts a higher percentage of the energy into light. This lower heat generation reduces the need for cooling systems, especially in commercial buildings, which can further save energy and reduce GHG emissions.

CNO proposes to switch traditional lighting at all of its government buildings to LED lighting.

¹⁷ U.S. EPA Waste Reduction Model (WARM), Documentation for GHG Emission and Energy Factors, Management Practices Chapter, Dec 2023, EPA-530-R-23-018, Exhibit 1-1. Available here: <u>https://www.epa.gov/system/files/documents/2024-01/warm_management_practices_v16_dec.pdf</u>

¹⁸ <u>https://www.energy.gov/energysaver/led-</u>

lighting#:~:text=Residential%20LEDs%20%2D%2D%20especially%20ENERGY,times%20longer%2C%20than%20in candescent%20lighting.

3.2.3.1 RM #3 - Quantification of GHG Reductions

The total reduction in electricity consumption (in kWh/year) resulting from LED lighting installation was calculated using the percentage of energy savings for LED lighting, the average electricity consumed for lighting, and the annual electricity consumption in CNO properties in base year 2023. The typical energy savings for LED lighting is 75%, compared to incandescent lighting and approximately 17% of electricity consumed in commercial building is used for lighting.¹⁹

GHG emissions for CO₂, CH₄, and N₂O were calculated using the total reduction in electricity consumption and emission factors provided from the eGrid Power Profiler for subregion SPSO.²⁰ SO₂ and NO_x emissions were also calculated using emission factors from the U.S. EIA State Electricity Profile.²¹

Implementation is expected to begin in 2025. Implementation will include the purchase and installation of LED bulbs in CNO owned facilities. EPS will host biannual meetings to review RM status. RM #3 progress of electric usage will be tracked through Utility Authority billing, number of facilities with LED lighting, and cost savings.

Priority RM#3 is expected to result in an annual reduction of 462 metric tons of CO₂e.

3.3 Benefits Analysis

The primary co-benefit of the implementation of the priority reduction measures selected by CNO to reduce GHG emissions is the accompanying reduction in air pollution. Air pollutants are emitted into the atmosphere during the generation of electricity from traditional fossil fuels. Both RM#1 (automatic lighting sensors) and RM#3 (Switch to LED lighting) will reduce the consumption of electricity in buildings. This reduction in use of electricity will have a corresponding reduction in air pollution typically associated with electricity generation.

RM#2 (elimination of single-use plastics) will also have a beneficial impact on reduction in air pollution – from avoided emissions of air pollutants from raw material extraction and manufacturing processes during the production of the single-use plastics. Elimination of single-use plastics will also have beneficial impacts on the overall environment by reducing potential waste and harm to water bodies, flora, and fauna.

¹⁹ U.S. Department of Energy's Energy Saver resource. <u>https://www.energy.gov/energysaver/led-lighting#:~:text=Residential%20LEDs%20%2D%2D%20especially%20ENERGY,times%20longer%2C%20than%20in candescent%20lighting</u>.

²⁰ eGrid Power Profiler for subregion SPSO. Available here: <u>https://www.epa.gov/egrid/power-profiler#/SPSO</u>.

²¹ U.S. Energy Information Administration (EIA). 2021 State Electricity Profile for Oklahoma. Available here: <u>https://www.eia.gov/electricity/state/oklahoma/</u>

 SO_2 and NO_x emissions reductions were also calculated for RM#1 and RM#3 using emission factors from the U.S. EIA State Electricity Profile.²² These are summarized in Table 3-2 and Table 3-3 below.

	Baseline – Year 2023, kg/yr	Reduction due to RM # 1, kg/yr
Sulfur dioxide (SO ₂)	189	94
Nitrogen oxide (NO _x)	379	187

Table 3.2. Benefits Quantification – RM #1

	Baseline – Year 2023, kg/yr	Reduction due to RM # 3, kg/yr
Sulfur dioxide (SO ₂)	189	142
Nitrogen oxide (NO _x)	379	284

Table 3.3. Benefits Quantification – RM # 3

ogen oxide (NOx) 379

3.4 Review of Authority to Implement

The proposed priority reduction measures only include CNO owned and/or operated entities and operations, thus, CNO has full authority to implement the selected measures. CNO has the authority to receive federal funds and distribute those funds in accordance with the associated federal government grant program requirements.

3.5 Identification of other Funding Mechanisms

CNO has identified alternative general funding mechanisms for projects, in three general classes:

- 1. **Competitive grants**: Funding grants through rigorous applications processes, prioritizing projects that demonstrate superior merit and potential impact. Competitive grants can support clean energy infrastructure projects such as carbon capture and storage as well as deployment capabilities for renewable energy technology in the form of solar and wind energy generation.
- 2. Formula grants: Programs such as these distribute pre-determined funding allocations based on a set formula, ensuring consistent support for essential clean energy initiatives. Examples of these are Conservation Block Grant program and Tribal formula grant program.

²² U.S. Energy Information Administration (EIA). 2021 State Electricity Profile for Oklahoma. Available here: <u>https://www.eia.gov/electricity/state/oklahoma/</u>

3. Other funding opportunities: Other funding opportunities for tribes can be found in the White House Inflation Reduction Act Tribal Guidebook²³ and the U.S. Department of Energy's Tribal Nations and Native Communities Resource Guide²⁴.

3.6 Workforce Planning Analysis

A strategic approach to developing a skilled workforce is essential. Emphasizing safety and environmental training in all aspects of the program ensures the workforce is adequately prepared to handle any hazards and comply with environmental regulations. This strategy includes specialized training programs that focus on technical skills such as environmental restoration techniques.

Targeted workforce development requires leveraging our existing partner base including local, tribal, state and federal agencies. CNO will serve as a training hub where on-site training and experience can be gained.

Collaborations with outside entities such as clean energy companies can potentially provide handson training and potential internships. This strategy may include developing apprentice type programs.

4.0 Next steps

The CNO presents this PCAP as a step towards enhancing climate resilience within the tribal territories of southeastern Oklahoma. The Priority Climate Action Plan (PCAP) outlined here has identified sources of greenhouse gas emissions but also proposes strategic, scalable solutions. The PCAP groundwork laid out will aid in the development of the Comprehensive Climate Action Plan. These future steps will focus on refining the strategies and expanding the scope to ensure a sustainable future.

²³ Guidebook to the Inflation Reduction Act's Clean Energy and Climate Investments in Indian Country. Available here: <u>inflation-reduction-act_tribal-guidebook.pdf</u>

²⁴ U. S. Department of Energy's Tribal Nations and Native Communities Resource Guide. Available here: <u>Department</u> of Energy's Tribal Nations and Native Communities Resource Guide

Appendix A – GHG Emissions Summary

Emissions Category Name	Sector							(metric tennes							
		Atoka	Choctaw	Naskell	Latimer	Le More	McCurtain	Pittsburg	Pushmataha	Bryan	Coal	Hughes	Johnston	Pontotoc	Total CNO Boundary
_	hisidential	11,585	11,307	154/6	365"4	39,559	24,455	00) Y	8,614	26,936	3,67	3,688	8	1,961	094/161
	Commercia/Dratitutional														•
Stationary Combustion	Irdothia	0	0	Q	51,455	0	301,642	68,006	0	22,576	10,285	129,460	0	0	702,077
	Energy Generation	0	586,839	0	0	H6'13	0	2,002,547	0	•	0	0	0	0	3,932,635
	Total Emissions	11,585	980,280	9,437	59/053	11,153	334,007	2,195,113	8,614	59,512	183,245	133,148	582	1,981	4,687,601
	Ducktordal														
	Commercia/Tratitutional														
Mobile Units	Irduchia														
	Energy Generation														
	Total Emissions	269,540	137,218	101,797	67,811	111,012	260,120	11,112	105,235	284,224	43,962	34,519	6,269	14,854	2,051,042
	Ducktordal	34,986	20, 276	79/05	1613) 26,133	112,208	191,88	115,973	27,943	34,526	14,301	8,707	1,915	5,817	68/945
	Commercia/(Institutional	18,596	27,265	15,881	13,763	71,133	52,000	68,981	17,679	45,044	9,60	5,94	943	5,064	111,000
Electricity	Irobstrial	8,928	8,68	057'07	19,473	66,063	76,903	50,421	6,710	43,085	4,960	17,940	86	11,17	343,438
	Erangy Generation														
	Total Emissions	62,512	75,101	73,802	60,195	249,484	216,069	25,275	52,409	164,455	28,998	31,997	3,620	22,078	1,296,296
	Rusidential														
	Commercial/Institutional	212	1981	56	-1,472	6,707	4,150	-5,032	436	2,464	/8	<i>w</i>	Û	4	123/52
Urban Forestry (Sequestration)	Industrial														
	Erangy Generation														
	Total Sequestration	475	1,951	-964	1,472	4,707	-6,150	5,032	\$36	-2,464	-98	-70	0	4	128/82
	Residential														
	Commercia(Trathutonal														58,798
System	Irebsteid														
	Erangy Generation														
	Total Emissions	0	0	0	0	0	0	0	0	0	0	0	0	0	58,798
	fusidintial														
	Commercial/Institutional														229,269
Agriculture	Irdustria														
	Erwrgy Generation														
	Total Emissions	0	0	0	0	0	0	0	0	0	0	0	0	0	992,922
	Pusidential														
	Commercia(Trathutonia	Ó	0	0	0	Û	16,588	18,762	5,033	2,607	Ú	Û	Û	Ó	123,910
Solid Waste	Irduitria														
	Erangy Generation														
	Total Emissions	•	•	•	•	•	94,588	18,762	\$103	2,607	•	•	0	0	123,910

Choctaw Nations of Oklahoma Base Year 2023 Stationary Combustion

nited States (U.S.) Energy Information Administration (EUA) Residential Energy Consumption Survey (RECS). Data is available for the State of sing population data to CMD boundary for Baser Year. 2023.

wse gas Tool (FLIGHT). Data is organized per county based on the facility locati Agency (EPA) Facility Level Gre for Base Year 2023.

ounty based on the JGHT). Data is seb

data to CNO boundary for Base Year 2023 ion for Year 2023

tion + EIA RECS for Residential. No data available for Commercial/Institutional Sector. Use EPA FLIGHT for Industrial & Energy Ger

Category	Data Year	Data	Geographic Boundary	Value	Unit of Measurement
1	2020	Natural Gas Consumption	State of Oktahoma	5.32E+10	5
MESOCITIA	2020	Propane Consumption	State of Oklahoma	4.64E+07	galons
	Data Scale	d to 2023 Base Year and CNO Bou	indary ²		
Desidential	2023	Natural Gas Consumption	CNO Boundary	3.10E+09	R
	2023	Propane Consumption	State of Oktahoma	2.71E+06	calors

Residential Stationary Combustion - GHG and Criteria Emission	on - GHG and Criteria Emissions																	
Fuel Type	Pollutant Category	Pollutant	Emission Factor ^{1, 3, 3}	Emission Eactor Itaite						23	Fotal Emissions ¹ (metric tonnes)							Total CNO Emissions
					Atoka	Choctaw	Haskell	Latimer	Le Flore	McCurtain	Pittsburg	Pushmataha	Bryan	Coal	Hughes	Johnston	Pontotoc (metric tonnes)
		Fuel Usage ⁴ (scf)			194,876,267	191,535,531	158,745,335	127,806,631	665,410,213	411,353,277	583,340,807	144,899,393	453,078,936	66,559,805	62,038,407	9,788,759	33,326,860	3,102,760,220
	GHG	0	5.31E+01	koMMBtu	10,609	10,427	8,642	6,958	36,225	22,394	31,757	7,888	24,665	3,623	3,377	233	1,814	168,913
	DHD	Ъ	1.00E-03	kg/MMBtu	0.1999	0.1965	0.1629	0.1311	0.6827	0.4220	0.5985	0.1487	0.4649	0.0683	0.0637	0.0100	0.0342	3.1834
	DHD	N ₂ O	1.00E-04	kg/MMBtu	0.0200	0.0197	0.0163	0.0131	0.0683	0.0422	0.0599	0.0149	0.0465	0.0068	0.0064	0.0010	0.0034	0.3183
Natural Gas	Criteria	NO	9.40E-05	lb/scf	8.3091	8.1666	6.7685	5.4494	28.3715	17.5392	24.8723	6.1782	19.3182	2.8380	2.6452	0.4174	1.4210	132.2945
	Criteria	8	4.00E-05	lb/sd	3.5358	3.4752	2.8802	2.3189	12.0730	7.4635	10.5840	2.6290	8.2205	1.2076	1.1256	0.1776	0.6047	56.2955
	Criteria	PM (total)	7.60E-06	lb/sd	0.6718	0.6603	0.5472	0.4406	6662.2	1.4181	2.0110	0.4995	1.5619	0.2295	0.2139	0.0337	0.1149	10.6962
	Criteria	'os	6.00E-07	lb/sd	0:030	0.0521	0.0432	0.0348	0.1811	0.1120	0.1588	0.0394	0.1233	0.0181	0.0169	0.0027	1600'0	0.8444
	Criteria	TOC	1.10E-05	lb/scf	0.9723	0.9557	0.7921	0.6377	3.3201	2.0525	2.9105	0.7230	2.2606	0.3321	560E-0	0.0488	0.1663	15.4813
	Criteria	VOC	5.50E-06	lb/sd	0.4862	0.4778	03960	0.3188	1.6600	1.0262	1.4553	0.3615	1.1303	0.1661	0.1548	0.0244	0.0831	7.7406
	Criteria	Lead	5.00E-10	Ib/sd	4.42E-05	4.34E-05	3.60E-05	2.90E-05	1.51E-04	9.336-05	1.32E-04	3.29E-05	1.03E-04	1.51E-05	1.41E-05	2.226-06	7.56E-06	7.04E-04
		Fuel Usage ⁴ (gal)			169,967	167,054	138,455	0/1/11	855,082	358,774	508,778	126,378	395,167	58,052	601°NS	8,538	29,067	2,706,167
	GHG	ຮົ	6.29E+01	kg/MMBtu	226	956	262	638	3,320	2,053	2,911	22	2,261	332	310	49	166	15,482
	GHG	đ	3.00E-03	koMMBtu	0.0464	0.0456	0.0378	0.0304	0.1584	6/60/0	0.1389	0.0345	0.1079	0.0158	0.0148	0.0023	6/00/0	0.7388
Propane	DHD	0°N	6.00E-04	kg/MMBtu	0.0093	0.0091	0.0076	0.0061	0.0317	0.0196	0.0278	0.0069	0.0216	0.0032	0.0030	0.0005	0.0016	0.1478
	Criteria	NON	1.305-02	Ib/gal	1.0022	0.9851	0.8164	0.6573	3.4222	2.1156	3.0001	0.7452	2.3302	0.3423	0.3191	0.0503	0.1714	15.9575
	Criteria	8	7.50E-03	Ib/gai	0.5782	0.5683	0.4710	0.3792	1.9743	1.2205	1.7308	0.4299	1.3443	0.1975	0.1841	0.0290	0.0989	9.2062
-	Criteria	PM (total)	7.00E-04	lb/gal	0.0540	0.0530	0.0440	0.0354	0.1843	0.1139	0.1615	0.0401	0.1255	0.0184	0.0172	0.0027	0.0092	0.8592
	Criteria	so,	5.40E-02	lb/gal	4.1632	4.0918	3.3913	2.7304	14.2153	8.7878	12.4620	3.0955	9.6792	1.4219	1.3253	0.2091	0.7120	66.2848
	Criteria	100	1.00E-03	Ib/gal	0.0771	0.0758	0.0628	0.0506	0.2632	0.1627	0.2308	0.0573	0.1792	0.0263	0.0245	0.0039	0.0132	1.2275

alue of 0.54 gr/scf 3 a suffur s. For SO₂ e for Pro Natural gas' NO, and CO emission factors per Table 1.4-1 of AP-42 Chapter
 Propane's emission factors per Table 1.5-1 of AP-42 Chapter 1.5 Liquefled i
 Propane's emission factors per Table 1.5-1 of AP-42 Chapter 1.5 Liquefled i

Tunes of Field Sectors for Varians factors for CH+ and NaO per Table C+2 to 40 GFR Part 98 Subpart C + Default CH+ and NeO Emi of Fuel for Various 1 r factors for COs per Table C-L to 40 CFR Part 98 Subpart C - Default COs Emission Factors and High Heat Value 3. Natural gas and propane emission

tion (see link here:

Natural Gas HW (NHRBu)(sc) = 1.05E-63 4. Foul University of an only the production data in the Achilry Data tab. 4. Foul Data Combaction for action of a stand using (sc) * Intraval Gas HW (NHBU)(sc) * Emission Factor (gal/NHBU), Convertud to metric tonnes. Natural Gas Combaction Emissions (netric tonnes) = Faul Usage (sc) * Intraval Gas HW (NHBU)(sc) * Emission Factor (gal/NHBU), Convertud to metric tonnes. Natural Gas Combaction Emissions (netric tonnes) = Faul Usage (sc) * Intraval Gas HW (NHBU)(sc) * Emission Factor (gal/NHBU), Convertud to metric tonnes. Natural Gas Combaction Emissions (netric tonnes) = Faul Usage (sc) * Emission Factor (gal/S). Convertud to metric tonnes. Program Combaction Final Sci (netric tonne) = Faul Usage (sc) * Emission Factor (gal/S). Convertud to metric tonnes.

DHD esidential Stat

Pollutant Category	Pollutant	GWP 1						85	CO ₁ e Emissions ² (metric tonnes)							Total CNO Emissions
			Atoka	Choctaw	Haskell	Latimer	Le Flore	McCurtain	Pittsburg	Pushmataha	Bryan	Coal	Hughes	Johnston	Pontotoc	
SHD	8	-	185'11	11,383	9,434	7,595	39,545	24,447	34,668	8,611	26,926	3,956	3,687	582	1,981	184,395
5HD	Ъ	6/22	1.4945	1.4689	1.2174	0.9802	5.1031	3.1547	4.4737	1.1113	3.4747	0.5105	0.4758	15/00.0	0.2556	23.7955
GHG	N ₂ O	<u>£/Z</u>	2:5535	2 5097	2.0801	1.6747	8.7190	5.3900	7.6436	1.8986	5.9368	0.8721	0.8129	0.1283	0.4367	40.6559
 GWPs per IPCC AR6 75M report, Table 7.5M.6, accessible here: http 	ps://www.ipcc.ch/report/ar6/wg1/do	winloads/report/IPCC_AR6_WGI_Chapter07_SM.pd														
The second																

977,173 0 0 857,342 Data Scaled to 2023 Base Year and CNO Boundary ¹ Le Flore Choctaw Atoka Pollutant ទំខំ **Pollutant Category** GHG ionary Combustion - Emi Data Year 2022 ndustrial and Energy Generation Industrial ¹ Category

	GHG	00%	•	968,893	•	•	871,594	•	2,092,347	0	0	0	0	0	0	3,932,835
gov(ghi	jhgp/main.do. FLIGHT da	ta is per facility and is sorted by County. County (emissions is obta	ined from adding	all the facilities v	within the CNO bo	.vndary.									
Polluta	ollutant Category	Pollutant							COse Emissions (metric tonnes)	- 0						Total CNO Emissions
			Atoka	Choctaw	Haskell	Latimer	Le Flore	McCurtain	Pittsburg	Pushmataha	Bryan	Coal	Hughes	Johnston	Pontotoc	(metric tonnes)
	GHG	00 <i>j</i> e	11,585	11,387	9,437	7,598	39,559	24,455	34,680	8,614	26,936	3,957	3,688	582	1,981	184,460
	GHG	coje	0	0	0	51,455	0	309,642	68,086	0	32,576	179,288	129,460	0	0	770,507
	GHG	ə ⁽ 00	•	568'896	•	•	P65'1/8	•	2,092,347	0	0	•	0	0	•	3,932,835
		Total CO2e Emissions	11,585	980,280	9,437	59,053	911,153	334,097	2,195,113	8,614	59,512	183,245	133,148	582	1,981	4,887,801

Total CNO GHG Emissions (metric tonnes) 780,245 3,969,740

Johnston

Hughes

Coal

Bryan

ą

McCurtain Pittsburg P 315,439 69,481 0 0 2,135,225

otal CO₂e Emi

Choctaw Nations of Oklahoma Base Year 2023 Mobile Units Combustion

ons Inventory (NEI) tool, "Mobile Sources", 2020 county-leve

						2020 Total Count	2020 Total County Level Emissions ¹							
Pollutant Category	Pollutants	Atoka	Choctaw	Haskell	Latimer	Le Flore	ore McCurtain	Pittsburg	Pushmataha	Bryan	Coal	Hughes	Johnston	Pontotoc
GHG	Carbon Dioxide	261,433	135,660	85,070	66,773	305,130	259,669	422,979	104,740	385,443	46,412	99,141	87,671	226,091
5HG	Methane	13.44/4	10001	12.4943	5.56/3	Z5.3410	26.0232	36.9590	9.4354	31.0118	3.2036	7.8452	7.8131	19.0622
riteria	Nitrode Oxide	802 0878	337 6875	233 2219	164 6805	843 2135	626 1338	1 084 3596	232.1185	840.2191	103 6744	785 1464	240.0351	450.8570
Criteria	Carbon Monoxide	2,324.8685	1,793.7909	1,611.5087	843.7592	3,673.6581	3,670.9480	5,399.8382	1,414.1363	4,363.5636	512.7549	1,176.5279	1,150.7782	2,639.1915
Criteria	Volatile Organic Compounds	158.2963	184.2465	218.9365	78.5437	336.3518	381.9654	519.9283	152.0041	385.1869	42.5409	102.7332	110.9777	195.7051
Criteria	Ammonia	12.1088	6.3369	3.6905	3.0379	14.3494	11.6648	19.7176	4.8306	17.6231	2.2134	4.4713	4.2070	10.1814
Criteria	PM10 Primary (Filt + Cond)	5,646.1744	2,266.8005	1,383.7767	1,529.2010	5,185.0351	5,210.4260	6,289.7551	2,482.0576	4,704.9290	871.2730	1,495.2905	1,799.3675	3,055.5343
Criteria	PM2.5 Primary (Filt + Cond)	624.4014 1 2021	254.8656	154.6410	168.8181	583.0934	5/9.4440	709.3148	2/2.444/	533.9246	96.5/48	168.91/8	196.8232	345.3631
	Formuldabuda	10001	0700 C	2202 C	1003 1	7 5374	1.0001	C1C7-7	1 0105	9002 9	90000	2 5 5 1 2	1220 0	00071
HAP	Acetaldehode	7 1852	1 5616	1 3645	120011	2 8120	10000	4 5355	1 0745	3 5060	0.4618	1 2410	1 0380	2 0016
HAP	Yulanec (Mixed Tomarc)	8 3145	10 3304	17 5806	4 3577	18 4140	21 8540	70 1865	8 6076	21 6738	2 3750	5 6118	6 1535	10 9453
HAP	Toluene	13.9611	17.5565	20.7818	7.5374	32.4365	36.2395	49.2488	14.4078	37.1890	4.0418	9.6180	10.6006	19.3112
HAP	Naphthalene	0.2999	0.2759	0.3093	0.1184	0.5150	0.5755	0.7978	0.2285	0.5666	0.0680	0.1658	0.1648	0.2811
HAP	Acrolein	0.3438	0.2197	0.1743	0.1147	0.5704	0.4368	0.6208	0.1358	0.4951	0.0775	0.1979	0.1512	0.2707
HAP	Renzene	3,1621	4.0771	5 2156	1.6619	6.9159	8.4074	11.4667	3,3863	8.2222	0.8815	2.1808	2.4261	4.1144
HAP	Ethylbenzene	2.2108	2,7839	3.4117	1.1646	4.9737	5,9190	7.8469	2.3534	5,8230	0.6213	1.5009	1.6505	2,9004
HAP	Pronionaldehvde	0.5037	0.2499	0.1578	0.1256	0.7558	0.4675	0.7796	0.1222	0.6055	0.0626	0.2563	0.1945	0.2978
AVH	Dolymetic Organic Matter	0 1477	0 1776	0 1750	0.0557	0.7468	0.761	0.3533	0 0066	0.7508	0.027	0.0873	0.0751	0 1272
AVH	2 2 4. Trimethylnentane	5 4541	8 0611	13 7657	2000 5	12 1607	10 07 31	74 8610	8 2007	17 0658	1 5616	3 0460	1000 3	6 2783
DVH	1 3-Butadiana	0.4375	0 5041	0.787.0	102.0	0.0038	1 2600	1 6005	00050	1 1603	01240	03102	0 3405	0 505.0
DAPH	Havana	0000 0	3000	4 6207	1 6060	0000 2	7 0110	10 000	0001 5	0 2000	0.000	31746	2 2016	2000 1
HAP	Strene	0.1642	0.2670	0.4073	0.0952	0.3394	0.5877	0.7557	0.2466	0.4830	0.0455	0.1171	0.1504	0.1944
HAP	Manganese Compounds	0.0133	0.0041	0.0004	0.0014	0.0179	0.0064	0.0181	0.0004	0.0150	0.0000	0.0052	0,0039	0.0063
HAP	Arsenic Compounds	0,0061	0.0016	0,0000	0,0005	0.0076	0.0022	0.0074	0,0000	0.0058	0.0000	0.0022	0,0017	0.0021
HAP	Nickel Compounds	0.0216	0.0052	0.000	0.0019	0.0759	0.0070	0.0241	0.0003	0.0183	0.000	0.0083	0.0062	0.0066
						2023 CNO	2023 CNO Emissions ²							
Pullished Category	Delli de unit			Harden	1 - Manuar		March 1	Pittel.	- the second sec				Tokan ta	
CUC CHERONY	Carbon Novida	700 404	126 340	D2 0C4				410 420			10 104			14 7EA
	Mothana	2010 21	10 0500	100/10	2122	004/470	1/0/002	001126	104/07	10C/207	47/104	067/10	0,227	10/101
	Meulane Nitoria Orido	0010'CT	1 0672	1 2/0/2	001010	CC11.02	2025 5	201/100	0024-6	0000/177	001010	FCT / 72	640000	201C 0
oi torio	Nitroom Ouidor	115 0100	0702.000	0002 000	100 1104	100010	3000 002	0CT / CLU F	701 0000	C1E 0000	2002 20	1002 00	104071	C1CF 0C
Criteria	Carbon Monovida	COTC:CT/	1000 000 1	1 240 7020	0011001	2 70E 633A	2 67 616	E 262 E704	1 417 5627	0102 200 0	100010	1000 204	01 7275	1210 021
Critaria	Volatila Organic Compounde	167 5710	185 1805	224 0685	9366 02	246 6040	3920 082	516 4262	151 8354	287 2667	0020.000	35 5381	7 8875	1177 01
Criteria	Amonia	12 4358	6 3600	2 7770	3 0643	14 7868	11 6065	10 5851	4 8753	12 0180	2 0852	1 5467	0 2088	0 6644
ritaria	DM10 Drimany (Elt ± Cond)	C 700 6767	0000 020 0	1 416 2126	1 547 4796	E 242 0790	C 104 2057	C 747 5107	BCUE 024 C	2 440 0080	010 010	E17 7607	177 8055	100 2044
oritoria	DMD E Drimmer (Ell+ 1 Cond)	10/00/10	CNC710/7/7	0012/01/1	00/1-1710/1	00/01/00/	1000-101/0	2010-12/0	07001011/2	000010110	00100000	1007170	0000 171	
Critoria	Culture Disuido	1007-11-0	0/01/002	1007001	CT10.202	100.004	10401010	/00000	L7L17/7	201-102	CT02.06	1001-00	13.7000	C/CC'77
		H024-1	0,7/0	+C/1-0	244-01	0054 2	1.3430	0.6170	/1017	1.2013	00770	C/0T-0	32410	0.0000
	Archaldobudo	CAAC C	1 500	1 2064	CV02 U	COCO C	2 1007	4 EVE1	1 0722	1023 0	0.4261	00000	00200	2012.0
	Vulnuer (Mixed Termone)	0 5301	0102.01	100011	1 2000	10 0702	71 7466	2000 00	0,670	10 000 31	C101 C	C110 1	1264.0	CV12.0
HAP	Tolinene	14 3387	17 6455	21 2680	2 6028	22 4757	26.0584	48 9180	14 3018	27 2610	3 8077	1 3 3771	0.7570	CUYC 1
HAP	Nanhthalene	0 2080	ELLE U	0.2166	0.1104	0 5207	0.5726	0.707.0	2800 0	0.4152	0.0641	0.0574	0.0117	0.0182
HAP	Acrolein	0.3531	0 2208	0.1784	0 1157	0.5878	0.272.0	0.6166	0 1357	6C7E-0	0.0683	0.0685	0.0107	0.0177
HAP	Benzene	3.2475	4.0927	5 3378	1.6763	7.1267	8.4549	11.3897	3.3825	6.0281	0.8304	0.7544	0.1723	0.2685
HAP	Ethylhanzana	2.2706	2 7981	3 4916	1.1747	5 0737	5 889.4	7 7947	2.3508	4 7686	0 5853	0 5192	0.1172	0.1893
HAP	Propionaldehvde	0.5173	0.2512	0.1615	0.1267	0.7789	0.4652	0.7743	0.1221	0.4439	0.0590	0.0887	0.0138	0.0194
HAP	Polycyclic Organic Matter	0.1512	0.1232	0.1289	0.0557	0.2543	0.2549	0.3499	0.0964	0.1904	0.0309	0.0285	0.0053	0.0086
HAP	2.2.4-Trimethylpentane	5.6015	9,0065	13.5777	3.2356	12.5314	19.8235	24,6940	8.3005	12.5103	1.4712	1.3650	0.3566	0.4162
HAP	1.3-Butadiene	0.4493	0.5971	0.8057	0.2462	1.0241	1.2636	1.6792	0.5093	0.8506	0.1168	0.1073	0.0248	0.0389
HAP	Hexane	3.1138	3.9465	4.7474	1.7107	7.6203	7.778	10.8490	3.1654	6.0484	0.8540	0.7350	0.1692	0.2867
HAP	Styrene	0.1686	0 2685	0.4169	0.0460	0 3498	0 5848	0.7506	0.2464	0.3541	0.0479	0.0405	0.0107	0.0127
HAP	Manganese Compounds	0.0136	0.0041	0.0004	0.0014	0.0185	0.0064	0.0180	0.0004	0.0110	0.0000	0.0018	0.0003	0.0004
HAP	Arsenic Compounds	0.0063	0.0016	0.000	0.0005	0.0078	0.002	0.0073	0.000	0.0042	0.000	0.0008	0.0001	0.0001
		00000	010010	00000		2200 0	77000	0000	00000	7000	00000	00000	100000	10000

	V	N.			DC"	IA N	N
Total CNO Emissions	(metric tonnes)	2,038,377	4,817.7730	7,846.8674	2,051,042		
	Pontotoc	14,754	34.7058	65.6646	14,854		
	Johnston	6,227	15.4830	25.9289	6,269		
	Hughes	34,296	75.7172	147.1660	34,519		
	Coal	43,724	84.2029	153.0788	43,962		
	Bryan	282,554	634.2673	1,036.5273	284,224		
	Pushmataha	104,624	262.9562	347.5770	105,235		
CO ₂ e Emissions ² (metric tonnes)	Pittsburg	420,138	1,024.2308	1,560.4131	422,722		
	McCurtain	258,371	722.4192	1,026.6473	260,120	If	
	Le Flore	314,430	728.5653	1,612.5315	316,771	GI Chapter07 SM.p	
	Latimer	67,353	156.6750	301.1988	67,811	report/IPCC_AR6_W	
	Haskell	87,064	356.7628	376.5955	87,797	r6/wq1/downloads/r	
	Choctaw	136,348	336.4715	533.0677	137,218	ww.ipcc.ch/report/a	
	Atoka	268,494	385.3161	660.4711	269,540	ible here: https://w	formed) * GWP.
GWP ¹		1	27.9	273	2 ₂ e Emissions	M report, Table 7.SM.6, access	(CO2e Emissions (metric trannes) = Emissions (metric trannes)
Pollutant		co ₂	CH,	N ₂ O	Total CC	 GWPs per IPPC AR6 7SN 	2. CD2e Emissions (metric

25 | P a g e

							2020 Emissio	ns, Sorted by Mot	2020 Emissions, Sorted by Mobile Source Category ² (tonnes)	rry ² (tonnes)					
				Highwa	Highway Vehicles					Off-highway Vehicle					
Pollutants	GWP ¹	Compressed Natural Gas												Railroad	Marine Vessels,
		(CNG)	Diesel	Electricity	Ethanol (E-85)	Gasoline	Total	CNG	Diesel	Gasoline	Dd	Total	Pleasure Craft	Equipment	Commercial
Carbon Dioxide		1,939	1,000,837	0	2,649	1,406,221	2,411,646	1,177	111,172	24,867	10,752	147,969	71,955	108,579	431
Methane	27.9	16,6888	21.5987	00000	0.2672	101.9966	140.5515	7.1414	2.1722	18.6032	0.6257	28.5425	54.0605	8.5543	0.0000
Nitrogen Oxides	273	0.9886	2,744.6795	0.000	0.7993	1,506.0517	4,252.5191	3.1368	558.7986	51.5664	20.8932	634.3949	513.5461	1,360.1976	5.7977
Total CO2	Total CO2e Emissions ⁴	2,674	1,750,737	0	2,874	1,820,219	3,576,505	2,232	263,785	39,464	16,474	321,955	213,661	480,152	2,014
							2023 CNO Emist	tions, Sorted by M	2023 CNO Emissions, Sorted by Mobile Source Category ³ (tonnes)	gory ³ (tonnes)					
Dollistante	cun ¹			Highwa	Highway Vehicles				0	Off-highway Vehicle					
	AWD	Compressed												Railroad	Marine Vessels,
		Natural Gas	Diesel	Electricity	Ethanol (E-85)	Gasoline	Total	CNG	Diesel	Gasoline	Dd	Total	Pleasure Craft	Equipment	Commercial
Carbon Dioxide	1	113	58,371	-	154	82,014	140,653	69	6,484	1,450	627	8,630	4,197	6,333	25
Methane	27.9	0.9733	1.2597	0	0.0156	5.9487	8.1973	0.4165	0.1267	1.0850	0.0365	1.6647	3.1529	0.4989	0
Nitrogen Oxides	273	0.0577	160.0767	0	0.0466	87.8368	248.0178	0.1829	32.5906	3.0075	1.2185	36.9995	29.9513	79.3302	0.3381
Total CO2	Total CO2e Emissions ⁴	156	102,107	0	168	106,160	208,591	130	15,385	2,302	196	18,777	12,461	28,004	117
1. GWPs per IPPC AR6 75M	 GWPs per IPPC AR6 75M report, Table 7.5M.6, accessible here: https://www.ipcc.ch/report/ar6/wg1 	ble here: https://ww	ww.ipcc.ch/report/art	6/wg1/downloads/n	/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf	I_Chapter07_SM.pd	ŧ								

All raw data is obtained from the U.S. EPA'S National Emissions Inwentory (NEI) tool, "Mobile Sources", 2020 state-level data.
 Data scaled by the Population in the Activity Data tab.
 CO2e Emissions (methic tornnes) = Emissions (metric tornnes) * GWP.

Choctaw Nations of Oklahoma Base Year 2023 Electricity

Methoc Data is o

National Emissions Inventory

2023 Total County Electricity Consumption¹ (MMBtu) Activity Data

CNO County	2023 Total Count	2023 Total County Electricity Consumption ¹ (MMBtu)	iption ¹ (MMBtu)	2023 CNO Ele	2023 CNO Electricity Consumption (MMBtu) ²	ion (MMBtu) ²
	Residential	Commercial	Industrial	Residential	Commercial	Industrial
Atoka	269,892	143,472	68,870	269,892	143,472	68,870
Choctaw	303,774	210,333	65,245	303,774	210,333	65,245
Haskell	236,538	122,509	210,284	236,538	122,509	210,284
Latimer	207,818	106,323	150,223	207,818	106,323	150,223
Le Flore	866,218	548,743	509,629	866,218	548,743	509,629
McCurtain	664,712	408,158	593,944	664,712	408,158	593,944
Pittsburg	894,645	686,426	388,962	894,645	686,426	388,962
Pushmataha	215,537	136,382	52,379	215,537	136,382	52,379
Bryan	833,636	513,924	492,006	574,916	354,427	339,311
Coal	117,842	78,993	40,616	111,017	74,418	38,264
Hughes	195,170	119,713	402,338	67,168	41,199	138,465
Johnston	215,489	91,057	106,069	15,390	6,503	7,575
Pontotoc	693,656	606,175	1,332,752	44,876	39,216	86,221
	To	tal CNO Electricity C	Total CNO Electricity Consumption (MMBtu)	4,472,499	2,878,109	2,649,374
		fotal CNO Electricity	Total CNO Electricity Consumption (MWh)	1,310,760	843,490	776,455
 2023 Total County Electricity Cons (SLOPE). https://maps.nrel.gov/slope consumption&year=2020&res=state. 	Electricity Consumption of unel.gov/slope/data-view 120&res=state.	btained from the Nation ver?filters=%5B%5D&la	 2023 Total County Electricity Consumption obtained from the National Renewable Energy Laboratory (NREL) State and Local Planning for Energy SLOPE), MIDSL: //Imaga.reli.gov/Jobp/dlaba.veiwer/filters=%529%50Bayer=energy-consumption.net-electricity-and-reaural-gas- science). MIDSL: //imaga.reli.gov/abayer=science). 	oratory (NREL) Sta net-electricity-and	te and Local Planning -natural-gas-	g for Energy
Data scaled to CNO	Data scaled to CNO boundaries using population data.	tion data.				

Emission Calculations	ons															
Category	Pollutant Category	Pollutant	Emission Factor ¹							Total Emissions ² (metric tonnes)						
			(man /m)	Atoka	Choctaw	Haskell	Latimer	Le Flore	McCurtain	Pittsburg	Pushmataha	Bryan	Coal	Hughes	Johnston	Pontotoc
	Electri	Electricity Consumption (MWh)	(Wh)	79,097	89,028	69,322	60,905	253,863	194,808	262,194	63,168	168,491	32,536	19,685	4,510	13,152
Internation of	GHG	ŝ	9.70E+02	34,816	39,187	30,513	26,808	111,742	85,748	115,409	27,804	74,164	14,321	8,665	1,985	5,789
IPhilanisau	GHG	ਲੱ	7.20E-02	2.5832	2.9075	2.2640	1.9891	8.2908	6.3622	8.5629	2.0630	5.5027	1.0626	0.6429	0.1473	0.4295
	GHG	N2O	1.00E-02	0.3588	0.4038	0.3144	0.2763	1.1515	0.8836	1.1893	0.2865	0.7643	0.1476	0.0893	0.0205	0.0597
	Electri	Electricity Consumption (MWh)	1Wh)	42,047	61,642	35,904	31,160	160,821	119,619	201,172	39,970	103,872	21,810	12,074	1,906	11,493
Commercial/	GHG	ŝ	9.70E+02	18,508	27,133	15,804	13,716	70,788	52,652	88,549	17,593	45,721	009'6	5,315	839	5,059
Institutional	GHG	ਤੱ	7.20E-02	1.3732	2.0132	1.1726	1.0177	5.2522	3.9066	6.5700	1.3054	3.3923	0.7123	0.3943	0.0622	0.3753
	GHG	N ₂ O	1.00E-02	0.1907	0.2796	0.1629	0.1413	0.7295	0.5426	0.9125	0.1813	0.4712	0.0989	0.0548	0.0086	0.0521
	Electri	Electricity Consumption (MWh)	(Wh)	20,184	19,122	61,628	44,026	149,358	174,068	113,994	15,351	99,442	11,214	40,580	2,220	25,269
Tadatation	GHG	ຮ່	9.70E+02	8,884	8,417	27,127	19,379	65,742	76,619	50,176	6,757	43,771	4,936	17,862	677	11,123
PLINSING	GHG	ਤੱ	7.20E-02	0.6592	0.6245	2.0127	1.4378	4.8778	5.6848	3.7229	0.5013	3.2477	0.3662	1.3253	0.0725	0.8253
	GHG	N2O	1.00E-02	0.0916	0.0867	0.2795	0.1997	0.6775	0.7896	0.5171	0.0696	0.4511	0.0509	0.1841	0.0101	0.1146
 Emission Factor is Total Emissions = 	1. Emission Factor is provided from eGrid Power Profiler for subregion 5550. Available here: https://www.epa.gov/egrid/power-profiler#/2550. 2. Total Emissions = Electricity Consumption (IVMn) * Emission Factor (Ib/MVh). Converted to methic tronnes.	r Profiler for subregion 5 (Wh) * Emission Factor (SPSO. Available here: http (lb/MWh). Converted to n	ps://www.epa.gov/ metric tonnes.	/egrid/power-profiler.	#/SPSO.										
	A second se															

23.0245 23.0245 31.2908 11,177 11.9835 16.2859 5,817 5,059 10.4722 14.2320 14.2320 5,084 1.7366 2.3600 843 977 977 2.7491 2.7491 982 4.1096 5.5851 **1,995** 839 17.9364 24.3759 8,707 5,315 11.0019 14.9517 5,341 17,862 36.9755 50.2504 17,949 Hughes 8,665 14,321 29.6459 40.2894 **14,391** 9,600 19.8724 27.0070 9,647 4,936 10.2179 13.8863 13.8863 Coal 153,5252 208,6439 74,526 45,721 94,6460 128,6258 45,944 43,771 90,6095 123,1402 123,1402 123,1402 Bryan 36.4194 49.4947 **17,679** 6,757 13.9873 57.5569 78.2209 **27,940** 17,593 Total CO₂e Emissions² (metric tonnes) Pittsburg 115,009 218,009 324,6772 115,072 115,073 115,073 115,073 115,073 183,509 183,309 269,1124 269,1124 201,105 103,0682 103,0682
 177.5043

 241.2319

 86,167

 82,652

 108.9942

 108.9942

 108.9942

 108.9942

 166.1254

 76,619

 158.6065

 215.5495

 76,993
 231.3143 231.3143 314.3608 **112,288** 70,788 146.5359 199.1453 **71,133** 65,742 136.0911 184.9506 **66,063** Le Flore 55.4955 75.4196 **26,939** 13,716 28.3925 38.5859 13,783 19,379 40.1155 54.5178 54.5178 63.1650 85.8425 **30,662** 15,804 32.7148 44.4601 **15,881** laskell Atolia 39,187 34,816 39,187 72,0117 01,243 33,9469 30,77 34,956 30,77 38,3126 56,7 28,3126 56,7 28,3126 56,7 28,3126 56,7 28,3126 56,7 28,3126 56,7 28,3126 56,7 38,3126 56,7 38,3126 56,7 38,3126 56,7 38,3126 56,7 38,3126 56,7 38,3127 56,7 38,312 56,7 34,325 56,7 34,355 5 GWP¹ CO₂ CH₄ N₂O Total CO₂e Emissions Pollutant CO₂ CH₄ NO Total CO₂e Emissi Pollutant Category tions - GHG Summary 응 응 응 응 응 응 GHG GHG Commercial/ Institutional Emission Calculat Residential Category

 GWPs per IPPC AR6 75M report, Table 7.SM.6, accessible here: https: 2. CO2ea Emissions (metric tonnes) = Emissions (metric tonnes) * GWP. fotal CO₂e Emissions

ਤੋਂ ਤੋਂ

Industrial

19.0090 6,790

141.1590 50,421

23.6784 76.3147 8,458 27,259 port/IPCC_AR6_WGI_Chapter07_SM.pdf

56.1542

Choctaw Nations of Oklahoma Base Year 2023 Urban Forestry

Methodoloov Data is obtained from the U.S. Forest Service Research Data Archive, 2020 Total Urban Area and Percent Urban Area with Tree Cover.

U.S. Forest Service Research Data Archive	search Data A	rchive
Activity Data		
County	2020 Total Urban Area (km²) ¹	2020 % Urban Area with Tree Cover ²
Atoka County	1.9311	21.5500%
Choctaw County	10.0345	21.5500%
Haskell County	7.2018	14.8400%
Latimer County	7.6532	21.3200%
Le Flore County	28.9311	25.7000%
McCurtain County	24.1257	28.2600%
Pittsburg County	34,4339	16.2000%
Pushmataha County	2.7570	21.5500%
Bryan County	22.3363	18.0143%
Coal County	0.8824	14.1382%
Hughes County	3.4029	6.7588%
Johnston County	6060'0	1.1700%
Pontotoc County	2.3014	1.6998%
 Total Urban Area obtained from the U.S. Forest Service Research Data Archi 2. Percent Urban Tree Cover obtained from the U.S. Forest Service Research D 	he U.S. Forest Service ed from the U.S. Fore:	J.S. Forest Service Research Data Archi rom the U.S. Forest Service Research D
Emission Calculations		

hive, *Urban Land Cover datas*et. Data accessible here: https://www.fs.usda.gov/rds/archive/catalog/RDS-2021-0075 Data Archive, *Urban Tree Cover dataset*. Data accessible here: https://www.fs.usda.gov/rds/archive/catalog/RDS-2021-0075

							0	County-Level Data	ta					
Parameter	Parameter Units	Atoka	Choctaw	Haskell	Latimer	Le Flore	McCurtain	Pittsburg	Pushmataha	Bryan	Coal	Hughes	Johnston	Pontotoc
2023 Total Urban Area	km²	1.9311	10.0345	7.2018	7.6532	28.9311	24.1257	34.4339	2.7570	15.1667	0.7701	1.1506	0.0064	0.1470
2023 Urban Area with Tree Cover	%	21.55%	21.55%	14.84%	21.32%	25.70%	28.26%	16.20%	21.55%	18.01%	14.14%	6.76%	1.17%	1.70%
CO ₂ e Emissions/Sequestration ¹	metric tonnes CO ₂ e	375	1,951	964	1,472	6,707	6,150	5,032	536	2,464	86	70	0	2
1 As webeened by the Tellin Cone	inhouro Cae Taunahaar	TAA TETT HAA	arhon Connortention	deline Castor for Alab	name from the EDA	Chate Incontour	and land the Ch.	and found	14 Chain Tarradani Taala Land Han Chanan and Eurodai madiila. Madiilan ana ha dai		alandad havai hitinii (inini ana ani/atatalana)	in one set of the		and all a subset of the second se

1. As referenced by the Tribal Greenhouse Gas Inventory Tool (TGLT), the Carbon Sequestration Factor for Oklahoma from the EPA State Inventory Tools, Land-Use Change and Forestry module. Modules can and-projection-tool

CO2s Sequestration (metric tonnes) = Total Urban Area (km2) * Urban Area with Tree Cover (%) * (2.46 metric ton Chectare/yr) * 100 hectare/km2) * (CO3 Molecular Weight (44 g/m0) / C Molecular Weight (22 g/m0) 2.46 metric ton C/hectare/year (Oklahoma Carbon Sequestration Factor)

Wastewater Treatment Systems **Choctaw Nations of Oklahoma** Base Year 2023

Methodology

Data is obtained from the U.S. EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks. Data is available on a country-wide basis for Year 2022. Data is scaled using population data to CNO Boundary for Base Year 023.

EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks.

EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks - Raw Data

2. Industrial activity for CH4 includes the pulp and paper manufacturing, meat and poultry processing, fruit and vegetable processing, starch-based ethanol production, petroleum refining, and breweries industries. 3 Industrial activity for N20 includes the pulp and paper manufacturing, meat and poultry processing, starch-based ethanol production, and petroleum refining.

4. Data scaled by Population Data below.

octaw Nations of Oklahoma	e Year 2023	iculture
Choctaw	Base Y	Agricul

Methodology

Data is obtained from the 2017 Commercial Fertilizer Purchased (Nitrogen) statewide value from EPA and scale to CNO population acreage.

EPA 2017 Commercial Fertilizer Purchased (Nitrogen) - Oklahoma

Activity Data

Data	Data Year	Geographic Boundary	Value	Unit of Measurement
Fertilizer Purchased ¹	2017	State of Oklahoma	237,380	1000 kg of N
		Data Scaled to CNO Boundary	ary ²	
Fertilizer Purchased	2017	CNO Boundary	36.742	1000 kg of N

1. Fertilizer Purchased value obtained from the Nutrient Pollution - Commercial Fertilizer Purchased, Fertilizer nitrogen data table. Data table provides amounts of

fertilizer nitrogen (N) purchased by states in individual years; 2017 data utilzed for calculation of N₂O emissions. Data table accessible here:

CNO Boundary area is obtained from "Activity Data - State of Oklahoma" Table. https://www.epa.gov/nutrientpollution/commercial-fertilizer-purchased#table1

N₂O Emissions from Fertilizer Application

229.269
273
839.8128
N2O

1. For conservative emission estimation purposes, it is assumed all fertilizer applied is synthetic fertilizer. Fertilizer emissions are determined using the emission factors

and calculation equation in the table below, as provided in the Tribal Greenhouse Gas Inventory Tool (TGIT).

Emission Factors and Calculation Basis for N2O

							N2O Molecular
						Percent from	Weight/N ₂ O-N
		Percent N lost to	Percent N Leach and		Percent from	Leached and	Molecular
Fertilizer Type	Percent N Content	Volatilization	Runoff	Percent from Applied N	Volatized N	Runoff N	Weight:
Synthetic	1	0.1	0.3	0.0125	0.01	0.025	
Organic	0.037	0.2	0.3	0.0125	0.01	0.025	1.57
Manure	0.005	0.2	0.3	0.0125	0.01	0.025	
		J 1 0001					

Sources: Unless otherwise noted, all fertilizer emission factors are IPCC default values from the Revised 1996 Guidelines for National GHG Inventories.

Consumption)*(Percent N Content)*(Percent N lost to Volatilization)*(Percent from Volatized N)+(Fertilizer Consumption)*(Percent N content)*(1-Percent N lost to Volatilization)*(Percent Eq. 11.1. Direct N2O Emissions from Managed Soils (IPCC 1996) = ((Fertilizer Consumption)*(Percent N Content)*(1-Percent N lost to Volatilization)*(Percent from Applied N)+(Fertilizer N Leach and Runoff)*(Percent from Leached and Runoff))*N2O/N2O-N*(metric tonnes*1.102 short tonnes)

GWPs per IPCC AR6 7SM report, Table 7.SM.6, accessible here: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WG1_Chapter07_SM.pdf
 CO2eq Emissions (metric tonnes) = Emissions (metric tonnes) * GWP.

Choctaw Nations of Oklahoma Base Year 2023 Solid Waste

Methodology

Data is obtained from the annual tonnage reports submitted to Oklahoma Department of Environmental Quality and is used as inputs into the California Air Resources toard's (CARB) Landfill Tool to calculate emissions.

OKDEQ Annual Tonnage Reports & CARB Tool

.

Facility Name									
	County	Solid Waste Permit	Facility Type	LFG Collection	Comprehensive or Partial	Tons Reported CO ₂ Emissions ² CH ₄ Emissions	CO2 Emissions ²	CH4 Emissions ²	Total CO2e Emissions
	•	Number		system	LFG CONECTION SYSTEM?	CY 2023 ⁻		(MT CO2e)	
			Construction & Demolition						
City of Durant Landfill	Bryan	3507001	Landfill	No	N/A	5,259	359	2,248	2,607
			Municipal Solid Waste						
City of Broken Bow Landfill	McCurtain	3545008	Landfill	No	N/A	26,415	649	4,065	4,714
			Municipal Solid Waste						
McCurtain County (Idabel) Landfill	McCurtain	3545011	Landfill	No	N/A	14,173	326	2,041	2,367
International Paper - Valliant Mill NHIW			Non-hazardous Industrial						
Landfill ³	McCurtain	3545009	Waste Landfill	No	N/A	-			89,506
			Municipal Solid Waste						
City of McAlester Landfill	Pittsburg	3561012	Landfill	No	N/A	507	14	90	104
			Municipal Solid Waste						
Alderson Regional Landfill ⁴	Pittsburg	3561013	Landfill	Yes	Partial	86,538	:	:	18,362
McAlester Army Ammunition Plant NHIW			Non-hazardous Industrial						
Landfill	Pittsburg	3561014	Waste Landfill	No	N/A	1,112	44	273	317
			Municipal Solid Waste						
Clinton Lewis Construction Co. Landfill	Pushmataha	3564004	Landfill	No	N/A	37,325	817	5,116	5,933
					Tota	Total CO ₂ e Emissions	2,209	13,833	123,910

1. Values obtained from Annual Tonnage Reported from the Oklahoma Department of Environmental Quality, as reported here: https://www.deq.ok.gov/wp-content/uploads/2021/02/Annual_Tonnage_Reported.pdf

2. 2023 Emissions calculated via California Air Resources Board's (CARB) Landfill Gas Tool, using annual tons of waste reported from 2019-2024. See sample workbook here: https://ww2.arb.ca.gov/resources/documents/carbs-landfill-gas-tool. Emissions are determined using the equations from IPCC's Mathematically Exact First-Order Decay Model (2006 IPCC Guidelines), based on the percent waste that is degradable (ANDOC%), which is calculated using the following equation: and $C\% = \Sigma$ wipprac, x tdoc, x danf,

3. 2021 Industrial Waste Landfill (Subpart TT) emissions reported in the International Paper - Valiliant Mill's RY2022 Greenhouse Gas report, obtained from the U.S. EPA's GHG Facility Level Information on Greenhouse gases Tool (FLIGHT), have where WIPFRAC is the fraction of the ith component in the Waste-in-Place, TDOC is the total degradable organic carbon fraction of the ith waste component, and DANF is the decomposable anaerobic fraction of the ith waste component. been scaled up to CNO boundaries and population for McCurtain County for 2023 emissions. CH4 emissions from the FLIGHT tool were converted to CO2e basis using GWPs per IPCC AR6 75M report, Table 7.5M.6, accessible here: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf

4. 2022 emissions reported in the Alderson Regional Landfill's RY2022 Greenhouse Gas report, obtained from the U.S. EPA's GHG Facility Level Information on Greenhouse gases Tool (FLIGHT), have been scaled up to CNO boundaries and vopulation for Pittsburg County for 2023 emissions. Population data is located in the "Activity Data - State of Oklahoma" table on the Activity Data tab.

Appendix B – Priority GHG Reduction Measures – GHG Reduction Quantification

Baseline emissions from lighting in Base Year 2023

Electricity consumption reduction from implementation of occupancy sensors

Percent of electricity consumes on a typical commercial building for lighting¹

¹ From U.S. Energy Information Administration (ELA) 2012 Commercial Buildings consumption Survey (CBECS) Survey. Available here: https://www.eia.gov/consumption/commercial/reports/2012/lighting/

Annual Electricity Consumption in CNO Properties within scope of project 2

Electricity consumed for lighting in CNO properties

GHG Emissions Factors

GHG	Emissions Factor ³ (lb/MWh)	GWP^4
CO ₂	970.4	1
CH_4	0.07	28
N ₂ O ₂	0.01	273

² Data provided is regarding usage for 250 CNO facilities.

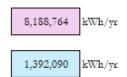
³ Emission Factor from EPA eGrid power profiler for subregion SPSO. Available here: https://www.epa.gov/egrid/power-profiler#/SPSO

⁴ Global warming Potential (GWP) per IPPC_AR6 7SM report, Table 7.SM.6, accesible here: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf

Baseline Lighting GHG Emissions - 2023

GHG	Emissions, lbs/yr	CO _{2c} , metric tonnes/yr
CO ₂	1,350,884	612.75
CH_4	100.23	1.27
N ₂ O ₂	13.92	1.72
	Total	616

Air Pollution - Baseline Analysis- Year 2023


Air Pollutants Emission Factors⁵

	lbs/MWh
Sulfur Dioxide (SO ₂)	0.3
Nitrogen Oxide (NO _s)	0.6

	kg/yr
Sulfur Dioxide (SO ₂)	189
Nitrogen Oxide (NO _x)	379

Baseline Air Pollution Estimate

⁵ From U.S. ELA State Electricity Profile 2021 available here: https://www.eia.gov/electricity/state/oklaboma/

17%

R. M. #1 - Installation of Automatic Lighting in all CNO owned/operated properties

Room Type	% Reduction 1		
	Min	Max	Average
Conference Room	20%	65%	43%
Private Office	13%	70%	42%
Open Office	5%	35%	20%
Restroom	30%	90%	60%
Storage Area	45%	80%	63%
Warehouse	50%	90%	70
		Average:	49%

Electricity consumption reduction from implementation of occupancy sensors

¹ U. S. Department of Energy - Better Buildings - Fact Sheet on Wireless Sensors for lighting Energy Savings, Available here: https://betterbuildingssolutioncenter.energy.gov/sites/default/files/attachments/Wireless-Sensors-Guidance.pdf

Percent of electricity consumed in a typical commercial building for lighting ²

² From U.S. Energy Information Administration (ELA) 2012 Commercial Buildings consumption Survey (CBECS) Survey. here: https://www.eia.gov/consumption/commercial/reports/2012/lighting/

Annual Electricity Consumption in CNO Properties within scope of R.M. #1³

Reduction in electrciity consumption due to R.M. #1 implementation

GHG Emission Factors

GHG	Emissions Factor ³ (lb/MWh)	GWP^4
CO ₂	970.4	1
CH_4	0.07	28
N ₂ O ₂	0.01	273

² Data provided is regarding usage for 250 CNO facilities.

³ Emission Factor from EP.4 eGrid power-profiler for subregion SPSO. Available here: https://www.epa.gov/egrid/power-profiler#/SPSO

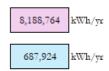
⁴ Global warming Potential (GWP) per IPPC_AR6 7SM report, Table 7.SM.6, accessible here: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf

GHG Emissions Reduction from R. M. #1

GHG	Emissions, lbs/yr	CO _{2e} , metric tonnes/yr
CO ₂	668	302.8
CH_4	49.53	0.63
N_2O_2	6.88	0.85
	Total	304

Benefits Analysis - Reduction in Air Pollution

Air Pollutants Emission Factors


	lbs/MWh
Sulfur Dioxide (SO ₂)	0.3
Nitrogen Oxide (NO _s)	0.6

Air Pollutans Emission Reduction from R.M. #1

	kg/yr
Sulfur Dioxide (SO ₂)	189
Nitrogen Oxide (NO _x)	379

⁶ From U.S. ELA State Electricity Profile 2021 available here: https://www.eia.gov/electricity/state/oklahoma/

R. M. #2 - Elimination of Single Use Plastics

Material	Current Mix of Inputs	100% Virgin Inputs	Average
	MTCO	$MTCO_{2c}/Short$ Ton of Material	
HDPE	1.420	1.520	1.470
LDPE	1.800	1.800	1.800
PET	2.170	2.210	2.190
LLDPE	1.580	1.580	1.580
PP	1.520	1.540	1.530
PS	2.500	2.500	2.500
PVC	1.930	1.930	1.930
Mixed Plastics	1.870	1.940	1.910
	•	•	1.860

Emission Factors ¹ for Source Reduction of Plastics

¹ U. S. EP.A Waste Reduction Model (WARM), Documentation fpor GHG Emission and Energy Factors, Management Practices Chapter, Dec 2023, EP.A-530-R-23-018, Exhibit 1-1. Available here: https://www.epa.gov/system/files/documents/2024-01/warm_management_practices_v16_dec.pdf

Number of Employees using single use plastic bags/cutlery²

400 persons/day
periodit/ day

0.27

31.00

kg/person/day

short tons

² Data provided is regarding usage for 250 CNO facilities.

Average plastic cup use per capita in U.S. 3

³ 2018 total p[er capita Municipal Solid Waste (MSW) daily per capita generation value of 4.9 pounds, with 12.2% of total MSW generated is plastics, as reported in the U.S. EP.4's National Overview: Facts and Figures on Materials, Wastes, and Recycling. Available here: https://www.epa.gov/facts-and-figures-about-materialswaste-and-recycling/national-overview-facts-and-figures-materials

Quantity of total single use plastics eliminated ⁴

⁴ Based on 5 days in the office year round

GHG Emission Reduction from R.M. #2

Emission Reduction

58 metric tonnes C	0 _{2e}
--------------------	-----------------

R.M. #3 - Switching to LED lighting at all CNO owned/operated properties

75% (compared to incandescent lighting) Typical Energy Savings for LED lighting 1 ¹ U.S. Department of Energy's Energy Saver resource. "Available here: https://www.energy.gov/energysaver/ledlighting#:~:text=Residential%20LEDs%20%2D%20especially%20ENERGY_times%20longer%2C%20than%20incandescent%20lighting 17% Percent of electricity consumed in a typical commercial building for lighting ² ² From U.S. Energy Information Administration (ELA) 2012 Commercial Buildings consumption Survey (CBECS) Survey. Available here: https://www.eia.gov/consumption/commercial/reports/2012/lighting/ 8.188.764 kWh/yr Annual Electricity Consumption in CNO Properties within scope of R.M. #3 3 ³ Data provided is regarding usage for 250 CNO facilities. 1.044.067 Reduction in electricity consumption due to R.M. #3 implementation kWh/yr

GHG Emission Factors

GHG	Emissions Factor ⁴ (lb/MWh)	GWP^5
CO ₂	970.4	1
CH4	0.07	28
N ₂ O ₂	0.01	273

⁴ Emission Factor from EP.4 eGrid power profiler for subregion SPSO. Available here: https://www.epa.gov/egrid/power-profiler#/SPSO

³ Global warming Potential (GWP) per IPPC AR6 75M report, Table 7.5M.6. Available here: https://www.incc.ch/report/ar5/wo1/dawnlaads/report/IPCC_AR6_WGI_Chapter07_5M.6df

GHG Emissions Reduction from R. M. #3

GHG	Emissions, lbs/yr	CO _{2c} , metric tonnes/yr
CO ₂	1,013,163	459.56
CH4	75.17	0.95
N ₂ O ₂	10.44	1.29
	Total	462

Benefits Analysis - Reduction in Air Pollution

Air Pollutants Emission Factors 6

	lbs/MWh
Sulfur Dioxide (SO ₂)	0.3
Nitrogen Oxide (NO _s)	0.6

Air Pollutans	Emission	Reduction	from	R .M.	#3

	kg/yr
Sulfur Dioxide (SO ₂)	142
Nitrogen Oxide (NO _x)	284

⁶ From U.S. ELA State Electricity Profile 2021 available here: https://www.eia.gov/electricity/state/oklahoma/